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UNDERSTANDING HIGH SCHOOL BODIES OF KNOWLEDGE 

What Does It Mean to Know Mathematics “In Depth”? 

Erhan Selcuk Haciomeroglu and Robert C. Schoen 

The Next Generation Sunshine State Standards (NGSSS) for mathematics were 

designed to address the perceived problem that students are expected to learn too many 

topics at every grade level (Schoen & Clark, 2007).  The phrase “a mile wide and an inch 

deep” has been used to describe U.S. mathematics standards.  The 1996 Sunshine State 

Standards, with an average of 83 grade level expectations per grade between 

Kindergarten and eighth grade, were often used to illustrate this “mile wide” curriculum.  

In contrast, language of the NGSSS includes expectations for students to create models of 

mathematical objects and concepts, explain and justify various algorithms and 

procedures, and develop quick recall of some mathematics facts, such as the basic 

multiplication facts and their related division facts (FLDOE, 2007).  

Although the NGSSS are meant to provide more opportunity for students to learn 

mathematics with more depth, classroom teachers are charged with selecting or designing 

appropriate tasks to teach mathematics in depth.  Dixon (2008) raises an important 

question, “How will curriculum implementation be revised so that teachers find the time 

to incorporate more strategies and depth for mathematical topics?” (p. 8).  We believe 

that the concept of cognitive complexity, or Depth of Knowledge (Webb, 1997), provides 

a structure through which to consider depth in teaching and learning mathematics.  In 

fact, each benchmark in the NGSSS has been assigned a target for the cognitive 

complexity of student tasks (FLDOE, 2007). The FLDOE uses three of the four levels in 

Webb’s Depth of Knowledge framework and the rating of each benchmark provides a 

ceiling for the state assessment related to that benchmark.  Thus, students need to engage 

in tasks related to the benchmarks and Big Ideas from the NGSSS at sufficiently high 

levels of cognitive complexity to be prepared to perform well on the state assessment.  In 

this article, we illustrate tasks on the same topic that invoke a range of cognitive 

complexity and we propose strategies for generating tasks with different levels of 

cognitive complexity.  These strategies may be utilized to convert tasks at a low level of 

cognitive complexity into ones at a higher depth of knowledge. 

Levels of Complexity within Quadratic Equations 

Low level tasks.  To introduce levels of cognitive complexity (or Depth of 

Knowledge) for high school mathematics, we consider the topic of quadratic functions.  

Tasks with low cognitive complexity are procedural or routine tasks that often require 
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recall of information.  In a low complexity task, students are encouraged to follow an 

algorithm or apply a formula that has already been presented to them.  Low complexity 

tasks may simply require students to recall definitions or procedures or retrieve 

information from a graph or table.  For instance, a task that requires a student to “State 

the quadratic formula” is an example of a task that predominantly requires recall of 

information. Other examples of these tasks for 

quadratic functions follow:  

1. Given the graph of y = −(x − 2)2 + 1  

(see Figure 1), determine the axis of 

symmetry, vertex, and  

x-intercepts. 

2. Use the discriminant to determine the nature 

and number of solutions of the quadratic 

equation x2
 – 5x + 4 = 0. 

Moderate level tasks.  Tasks with a moderate 

level of cognitive complexity involve multiple 

solution methods or translation between representations.   

The following tasks exemplify a moderate level of cognitive complexity: 

3. Describe how you can draw the graph of  

y = −(x − 2)2 + 1 from the graph of  

y = x
2 and determine the axis of 

symmetry, vertex, and intercepts of the 

new graph. 

4. Determine the nature and number of 

solutions of the quadratic equation  

x
2
 – 5x + 4 = 0 without using the 

discriminant.  

The cognitive complexity of items 3 and 4 

is higher than in items 1 and 2 because 

possible solution methods are not explicit in tasks 3 and 4.  Students must make their own 

decisions regarding how to approach items 3 and 4. 

Consider task three.  Drawing the graph of y = −(x − 2)2 + 1 with technology is a 

routine task and requires a low level of cognitive complexity.  When students are 

provided with rules to graph equations given in a specific format, the task may also be 

completed at a low cognitive complexity level without using technology.  However, 

requiring a student to think about the relationship between the graph of y = −(x − 2)2 + 1 

and the graph of y = x
2 raises the level of the task to a moderate cognitive complexity.  

To complete the task, the student may think that the graph of y = x
2 is shifted up one unit 

 
Figure 1 

 
Figure 2 
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in the positive y-direction, and then that the negative sign turns a “happy parabola” to a 

“sad parabola.”  Interpreting the effect of (x − 2) may be slightly more difficult to intuit.  

A student may rely on a memorized rule, reason that the maximum value of the function 

occurs when (x − 2) = 0, or reason that the value that is squared is two more than for the 

case of y = x2. In any case, the graph of y = −x
2 + 1 is shifted to the right two units to 

complete the transformation to y = −(x − 2)2 + 1.  Figure 2 arrives at the same result 

through a different order of steps. 

Consider task four.  Determining the nature of the solution of a quadratic equation 

x2 – 5x + 4 = 0 by using the discriminant requires a low level of cognitive complexity 

because students only need to apply a specific procedure.  However, when given the 

condition without using the discriminant, students must synthesize alternative strategies 

to solve the task.  For instance, the solutions, if any, of the quadratic equation  

x
2
 – 5x + 4 = 0 will be the x-intercepts for y = x

2 – 5x + 4.  To draw the graph, students 

may determine the coordinates of the vertex V(h, k).  One approach is to complete the 

square as follows:  x
2 − 5x + 4= x

2 − 5x + 
4

25
− 

4

25
+ 4 = (x − 

2

5
)2 − 

4

9
.  At this point, 

the student could use the same reasoning as the solutions shared for task one. 

Alternatively, the student may find the coordinates of the vertex using two familiar 

formulas: 
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Because the vertex 0(
)

&
,

$/

,
* is in the fourth quadrant 

and the parabola opens upwards (i.e., the coefficient of 

x
2 is positive), the parabola crosses the x-axis at two 

points (x = 1 and x = 4). Thus, the quadratic equation 

has exactly two real solutions (Figure 3).   

High level tasks.  Tasks with high cognitive 

complexity necessarily involve non-routine tasks and 

can usually be approached from multiple solution 

methods.  Non-routine means the solution methods are 

not explicitly suggested in these tasks or in recent tasks 

that have been posed or completed. Asking students to 

make connections between concepts or representations, 

synthesize ideas, or explore a variety of strategies to 

solve high cognitive level tasks creates rich 

opportunities for students to engage in doing mathematics and in learning how to think 

(not just what to think).  For instance, solving real-world problems with quadratic 

equations can be classified as moderate or high cognitive complexity depending on the 

task.  Consider the following: 

 

Figure 3 
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5. The area, A, of a rectangular field is given by  

A(x) = 1000 − 2x
2.  What is the maximum 

area of the field? 

6. A farmer has 2000 feet of fencing available to 

enclose a rectangular field and divide it into 

three rectangular sub-plots.  One 

configuration of this rectangular field and 

sub-plots is pictured in Figure 4.  What are 

the dimensions (x and y) of the largest 

rectangular field that the farmer can create? 

In task five, students find the maximum value of the quadratic function A(x).  

However, the task does not identify the function as quadratic.  A student may reason that 

the −2x
2 term is always negative or zero.  Thus, the maximum area occurs when  

−2x
2 = 0.  Solving the problem with this line of reasoning may not require any 

consideration of quadratics or vertices, but a more fundamental recognition that the 

square of a real number is always positive or zero.  This task poses a question related to 

quadratic functions in a non-routine manner.  The task may be solved in different ways 

using different mathematical concepts.  Thus, the task is a moderate or high complexity 

task. 

To solve task six, students need to express the length of fencing used and the area 

in terms of x and y (i.e., Total Length of Fencing = 2000 = 4x + 2y and Area of the Field 

= xy).  After solving 4x + 2y = 2000 for 2y, the expression 1000 − 2x may be substituted 

for y in the equation Area = xy = x(1000 − 2x) = 1000x − 2x
2.  The student must now 

recognize that this function is quadratic, so the x-value of the vertex provides the length 

of one side of the fence; evaluating the function for that value provides the area.  Using 

these two values for Area and x, the student may elect to solve the equation Area = xy for 

y.  There are other, less efficient ways to solve this problem without using calculus, such 

as substituting the x-value of the vertex into 4x + 2y = 2000 and solving for y.  Either 

solution is valid; the former may indicate a stronger understanding of function, while the 

latter may indicate a stronger understanding of solving equations.  Still, the student must 

synthesize all of the information extracted from the problem to determine the answer to 

the initial question: What are the dimensions of the rectangular field? 

Tasks with moderate or high complexity are not difficult to develop.  Without 

spending a significant amount of time, a teacher can convert routine tasks with low 

cognitive complexity into moderate or high cognitive complexity tasks.  Modifications 

are often as simple as asking students to answer the questions “Why does that work?” or 

“Why does that make sense?”  

 

 
Figure 4 
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Conclusion 

When we classify some of the tasks as procedural with low cognitive complexity, 

we do not claim these tasks are not beneficial or should be given decreased attention.  On 

the contrary, we think that tasks with low cognitive complexity serve a crucial role in 

building students’ mastery of basic algorithms and mathematical facts.  But teaching how 

to solve only procedural tasks (i.e., using low cognitive complexity) is not a sufficient 

goal or desired end point for instruction, because a singular focus on practicing 

prescribed procedures defeats the purpose of teaching students how to think and reason.  

For many students, understanding and facile thinking does not occur through the mastery 

of procedures and algorithms.  To teach and learn mathematics deeply, it is important that 

all students approach a variety of problems with high, low, and moderate levels of 

cognitive complexity.   
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